Integrated Magneto-Optical Isolators Using Semiconductor-Friendly YIG

Sang- Yeob Sung and Bethanie J. H. Stadler

Electrical and Computer Engineering, University of Minnesota

Light sources cannot be integrated w/ photonic integrated circuits (PICs) and OEICs

- •Back reflected light from insertion loss
- •Damage to source, loss of mode-lock
- Optical interconnects are unprotected

Usual cracking and etching issues of garnet on Si (above) have been overcome. See crack-free high-aspectratio waveguide (below)

MO garnet on Si

Garnet is the active material in magneto-optical isolators, but it is very difficult to integrate with Si.

We have overcome this and have waveguided in

integrated garnet. We

also have integrated polarizers using photonic

crystal technology.

HOW IT WORKS:

The garnet is biased with an integrated magnet (top film) that is on a cladding covering the waveguide. The polarizer is integrated in front of the guide so that backward traveling light can be blocked after being rotated by the garnet.

ASSUMPTIONS AND LIMITATIONS:

- It is assumed that future photonics will be on semiconductor platforms and that they'll want integrated sources.
- Devices now need to be developed with our garnet

Other isolator designs will also benefit from integrated garnet:

- Quasi-phase matching for eliminating birefringence
- Mach-Zhender interferometers
- Garnet-clad semiconductor guides
 Ring Isolators
- •MO garnet on SOI

MO garnet / Si waveguide on SOI

Integrated Optical Package

Integrated MO garnet allows integrated optical sources via isolators!

MINNESOTA

Integrated Optical Isolator on Semiconductor Sang-Yeob Sung

Fully integrated YIG optical Isolator on semiconductors

YIG ridge waveguide on Si wafer with SiO_2 cladding layer.

Waveguiding achieved

Integrated optical isolator

University of Minnesota Electrical Engineering

5.0kV

SE

U of MN

Sm₂Co₁₇ MgO Y₃Fe₅O₁₂ SiO₂

X12.000

WD 3.8mm

Fabricated YIG Waveguide on Semiconductor

Si/SiO₂/YIG H₃PO₄ 85%, 43°C RTA 800°C 2m